
BETA BASIC NEWSLETTER No.10

Fractal fern described in this issue

**
HIGH RESOLUTION SCREEN DUMPS

About 8 months ago I got a letter from Ejgil Hansen (Karlslunde,
Denmark). He had had a screen dump routine published in the last
issue of ZX Computing, and had later worked out a better 512*350
pixel routine which he thought I might like to look at. Ejgil's idea
was to use a reserved area of RAM as a high-resolution "screen"
memory on which points could be plotted and lines drawn. This memory
could be transferred to the normal screen for examination (at lower
resolution) or dumped to a printer. Sparked by this letter, I
decided to see what I could cook up along these lines in Beta Basic.
(Ejgil used machine code and Spectrum Basic.)

I tried a lot of things - GETS and MEMORY and POKES and giant
scrolling screens - which had one disadvantage or another. The
arrangement I finally settled on was fairly simple. When deciding
how the extra "screen" memory would be organised, I found there was
a conflict between a convenient arrangement for printer dumps (which
requires a byte to code for a vertical screen slice) and a
convenient arrangement for transferring the data to the real screen
memory for examination. Eventually I decided just to place any
plotted points on both the real screen and the invisible hi-res
screen at the same time, without worrying about transfers to and
from the real screen. This allowed the data format to be designed
for easy screen dumps (on an EPSON-style printer). I used a string
array r$(h,w) in which each character codes for a vertical slice of
1*8 pixels. The length of the strings in the array determines the
width of the hi-res screen in pixels, and the number of strings in
the array determines the height of the hi-res screen in B-pixel
units (i.e. character rows). BB 4.0 users could modify the routines
to use RAM disc arrays, which would allow 10 times the normal screen
area to be coded for. (Of course, it starts to take a long time to
fill it up with graphics!)

-2-

The array needs to be initialised to CHR$ 0's, rather than
spaces. PROC setup_rs sets up an array suitable for a hi-res screen
of specified width and height (given in character squares). It also
prepares an array of powers of 2 that is used later by PROC plotrs.
In contrast to my usual style, there is no - demo program for these
procedures here; instead, see the following item on fractals.

400 DEF PROC setup_rs w,h
 DIM r$(h,w)
 FOR n=1 TO h

LET r-$(n)=STRING$(w,CHR$ 0)
 NEXT n

DIM q(8)
 FOR n=0 TO 7

LET q(n+l)=2�n
NEXT n

 END PROC

PLOTing a point on the hi-res screen can be done using the
procedure below. The required bit in the array is set by ORing at
the binary level (using BB's OR) with an entry from the array q,
which will be 1,2,4,8,16,12,64 or 128. This is faster than
calculating powers of 2 each time. Another point concerning speed:
if you are doing lots of points e.g. drawing a line, it would be
faster to incorporate the working part of this procedure into the
line-drawing program, rather than use it as a separate PROC. This is
what I did in the FRACTALS item below, so the PLOTRS procedure isn't
actually used, but it might be useful...

500 DEF PROC plotrs x,y
 LOCAL r
 LET r=h-INT (y/8)
 LET r$(r,x+1)=CHR$ (OR(CODE r$(r,x+1),q(y-INT (y/8)*8
 +1)))
 END PROC

To have a proper loot: at your masterwork, dump it to a printer
with something like the procedure below. LPRINT must be directed to
a "b" type channel which will let through any character codes. The
first LPRINT should set the line spacing, and b$ should contain
control codes to tell your printer that W bit-image bytes are being
sent. If your printer does an automatic line feed after carriage
return you won't need the CHR$ 10 after LPRINT.

600 DEF PROC dumprs
 CLOSE #3
 OPEN #3;”b”
 LOCAL a$,b$,r,c,w
 LET w=LENGTH(2,"r$")
 LPRINT CHR$ 27;"A";CHRS 8;
 LET b$=CHR$ 27+"*"+CHR$ 6+CHRS MOD(w,256)+CHR$ INT (w
 /256)
 FOR r=1 TO LENGTH(1,"r$")
 LPRINT b$;
 FOR c=1 TO w
 LPRINT r$(r,c);
 NEXT c
 LPRINT CHR$ 10
 NEXT r

LPRINT CHR$ 27;"A";CHRS 11;
 END PROC

-3-

FRACTAL FERNS

For some time after devising the hi-res screen system described
earlier, I lacked a good use for it. Recently, however, I was
playing with a fractal pattern program from BYTE magazine that I
thought would benefit from greater resolution than is possible on
the Spectrum. However, if you don't have a suitable printer, or just
want a screen pattern, rather than a print-out similar to the
illustration on the cover, then omit line 20 and the last two
statements in line 180. (This gives better speed anyway!) The
illustration below is a normal dump from the real Spectrum screen -
compare it with the finer detail of the cover illustration.

I don't have the space or the expertise to describe fractals or
the program below properly, so I will be very brief. Fractals are
patterns which look the same as you magnify them (within the
resolution of your system). For example, the fern on the cover has
side branches which resemble the main fern, but are smaller, and the
side branches have smaller side branches which look like the side
branches, only smaller, and so on. A fairly small set of numbers can
describe the relative sizes of the main and smaller parts, their
angle, and other trey factors, to give a complex pattern. The
numbers to generate the fern are given in the DATA statements in
lines 40 and 50. The plotted points are distributed in a partly
random way, and the fern is built up gradually in better and better
detail.

To fit the fern, I set up a hi-res screen of roughly normal width
but 3, times normal height. I originally had a PRINT x, y statement
in line 180; knowing the likely range of values, I then got "fiddle
factors" to put in the PLOT statement to magnify the fern and keep
it on-screen, and "fiddle factors" to get j and k from x and y to
keep the hi-res plot within the limits of the array. For the cover
illustration, I set the FOR loop in line 140 to a very high value
and went to bed!

-4-

10 LET wid=35,hei=64
 20 setup_rs wid*B,hei
 30 DIM a(4)
 DIM b(4)
 DIM c(4)
 DIM d(4)
 DIM e(4)
 DIM f(4)
 DIM p(4)
 40 DATA 4
 50 DATA .85,.04,-.04,.85,0,1.6,.85
 DATA -.15,.28,.26,.24,0,.44,.07
 DATA .2,-.26,.23,.22,0,1.6,.07
 DATA 0,0,0,.16,0,0,.01
 60 READ t
 70 LET pt=0
 80 FOR n=1 TO t
 90 READ a(n),b(n),c(n),d(n),e(n),f(n),z
 100 LET pt=pt+z
 110 LET p(n)=pt
 120 NEXT n
 130 LET x=0,y=0
 140 FOR n=1 TO 10000
 150 LET z=RNDM(0)
 160 IF z<=p(1) THEN LET k=i
 ELSE IF z<=p(2) THEN LET k=2
 ELSE IF z<=p(3) THEN LET k=3
 ELSE LET k=4
 170 LET s=a(k)*x+b(k)*y+e(k),t=c(k)*x+d(k)*y+f(k),x=s,y=t
 180 IF N>10 THEN
 PLOT x*19+100,y*17
 LET j=x*57+125,k=y*51,r=hei-INT (k/8)
 LET r$(r,j+1)=CHR$ (OR(CODE r$(r,j+1),q(INT k-INT (
 k/8)*8+1)))
 190 NEXT n

For a pattern of fractal triangles, alter lines 40 and 50 as
follows. (The scaling "fiddle factors" and the array size will also
need changing.)

40 DATA 3
 50 DATA .5,0,0,.5,0,0,.34
 DATA .5,0,0,.5,1,0,.33
 DATA .5,0,0,.5,.5,.5,.33

**
LISTING BETA BASIC's FUNCTIONS

Beta Basic uses a large number of the available user function
letters as a means of adding its own functions. These are
transformed by the print routine into long names, so we see e.g.
STRING$ instead of FN s$ in our listings. We can exploit this to
provide a useful list of all possible functions; any functions not
turned into keywords are not used by BB and are still available.
(For upwards compatibility with BB 4.0, avoid using FNs Y$, F$ and
X$, which give extra functions in this version.) CHR$ 168 is "FN";
it is advisable to use this form, rather than "FN" itself, or the
line may look odd as you edit it.

10 FOR n=CODE "a" TO CODE "z"
 20 PRINT " ";CHR$ n;" ";CHR$ 168+CHR$ n+"(";
 TAB 16;CHR$ 168+CHR$ n+"$("
 30 NEXT n

-5-

EUROELECTRONICS LPRINT III PRINTER INTERFACE

This is from Iain Rendall of Edinburgh. (His father Ken also
subscribes; I've sold quite a few beta Basics by word-of-mouth -
even three copies to one family!) Iain writes:

"I am using the LPRINT III with the 48K... Before I had read the bit
at the back of the BB 4.0 manual, I made the following changes -
DPOKE 47005,23679 and DPOKE 59291,23679. These originally gave
references to the 57500 characters/line variable, but as the
interface uses 23679, I thought I would make the changes. Also, it
is possible to control the interface more or less as normal, using a
couple of DPOKEs. DPOKE DPEEK(23631)+15,3836 allows instructions to
be sent to the interface as normal and DPOKE DPEEK(23631)+15,64423
returns control to Beta Basic after the job is done. For example,
even after BB is loaded and has control of the "p" channel, graphics
can be selected by the following procedure: graphic 1 gives small
size; graphic 2 gives large size."

1000 DEF PROC graphic s
 1010 IF s<>1 AND s<>2 THEN RANDOMIZE USR 9465
 1020 DPOKE DPEEK (23631)+15,3836
 1030 LPRINT CHR$ 13
 1040 LPRINT CHR$ 3
 1050 LPRINT CHR$ 0:CHR$(7-2*s)
 1060 LPRINT CHR$ 13
 1070 DPOKE DPEEK (23631)+15,64420
 1080 END PROC

"However, issuing the COPY command still causes BB to lose control -
things can be restored with the next PROC, with line-spacing or
other things perhaps altered though:"

2000 DEF PROC copyret
 2010 LPRINT CHR$ 13 CHR$ 3;CHR$ 5;
 2020 COPY: DPOKE DPEEK(23631)+15,64423
 2070 END PROC

**
USE OF ALTER

Ettrick Thomson (Aldeburgh, Suffolk) sent this tip:

Your manual example 'ALTER 1 TO “23”' points out that such an
operation does not produce a usable line, but you don't mention that
subsequent 'editing' will put things right.

I recently wanted to make several changes to a program: for one of
them the easiest way was first to

ALTER " LET s=USR 54321" TO " POKE 16384,s$"

which not only fails to provide '16384' with invisible bytes, but
leaves in the program area those for '54321'; then

REF " POKE 16384,s$"

followed by repeated pressings of ENTER until the OK' message,
brought the corrupt lines to the editing area, stripped of all
invisible bytes, and then returned them to the program area,
properly fitted out with invisible bytes.

-6-

**
A CALCULATOR

The 128K Spectrum has a calculator option which is hard to get at
from Beta Basic. Here is a calculator procedure that will work with
both BB 4.0 and BB 3.0. It has a short name so that it can be
invoked easily. You might want to use it while you have something
important on the screen, so the area over-written by the calculator
screen window is saved beforehand and later restored. The PEEKS and
POKES in the procedure allow the previous window and CSIZE to be
found and restored. (CSIZE is normally changed automatically as you
change windows, but unfortunately WINDOW 0 always sets CSIZE 0 -
hence the need to handle CSIZE "manually".)

You can use any valid numeric expression as an entry. Also, a
"current value" is maintained in v$, which allows entries that
normally require a preceding number, like "+5", to be evaluated as
"current value+5". Press ENTER on its own to finish using the
calculator. A sample use of the calculator might involve typing the
following (with ENTER at the end of each line):

LIST (optional, to demonstrate window save/restore)
 (space)c
 16/3
 +1234
 /14
 *23
 /2�10

The final display (if you use PRINT USING as I did) will look
like the one below. Alternatively, use a simple PRINT, and widen the
window width from 88 to 104 to allow for long numbers.

5.3333
 1239.3333
 88.5238
 2036.0476
 1.9883

10 DEF PROC c
 LOCAL w,xs,ys,v,a$,t$,v$
 LET w=AND(PEEK 57407,127),xs=PEEK 57370,ys=PEEK 57371
 GET t$;0,175,11,8;1
 WINDOW 2;0,175,88,64
 20 WINDOW 2
 PAPER 6

INK 1
 CLS

LET v$="0"
 DO

INPUT LINE a$
 EXIT IF a$=""
 LET a$=(v$ AND (a$(1)<"0" OR a$(1)>"9"))+a$
 30 LET v=VAL a$
 PRINT USING "######.####";v
 LET v$=STRS v
 LOOP

PLOT 0,175,t$
 WINDOW w
 CSIZE xs,ys
 END PROC

-7-

**
LOADING AND EXECUTING A PROCEDURE

Subscriber Richard Edwards (London) wrote:

"I've been racking my brain trying to think of a way to merge a RAM
disc procedure and at the same time call it, with all the necessary
parameters, all with one statement."

You will gather that Richard is a BB 4.0 user, but his ideas are
also relevant to BB 3.0 with disc or Microdrive, provided speed
isn't critical. At this point, things were not going very well for
Richard - but there was another sheet of paper that continued:

"Luckily, I forgot to post the letter the day I wrote it, and since
then I've spent a sleepless night and come up with this other
procedure that does everything I wanted except sing and dance.
Variables can be passed by reference but care must be taken not to
use the same variables as the procedure or they will be corrupted.
I've chosen uncommon names for the four variables for this reason."

The basic idea is to fill up your RAM disc, cartridge or disc
with procedures that have line numbers in the 9000+ range. These are
then MERGEd, executed and deleted by Richard's PRGC. Richard used
the tip in Newsletter 8 to allow non-letter PROC names, so he could
type e.g.: ! test,1,2 to load and execute the procedure "test" with
parameters of 1 and 2.

Perhaps not everyone will want to use the name “!” ,especially if
a RAM disc isn't involved, and I'm not sure how to index "!", so I
will use the name "lrun" for Load and RUN.

10 lrun test,1,2

100 DEF PRGC lrun DATA
 110 LOCAL u$,j$,hk,jk
 120 LET u$=””
 170 DO
 READ LINE j$
 140 LET u$=u$+j$+","
 150 LOOP UNTIL ITEM()=0
 160 LET hk=LEN u$
 170 LET jk=INSTRING(1,u$,",")
 180 LET u$(jk)=" ",u$(hk)=" "
 190 MERGE !u$(1 TO jk)
 200 KEYIN u$
 210 DELETE 9000 TO
 220 END PROC

Notes: The DO-LOOP in this example will finish with u$ equal to
"test,1,2,". Line 170 finds the first comma so that the first part
of u$ can be used as the name to MERGE. (So, obviously, the
procedure must have been previously SAVEd with a file name that is
the same as the procedure name.) Alter line 190 to MERGE from tape,
Microdrive or disc instead of RAM disc. Line 180 removes the first
and last commas so that u$ equals "test 1,2 " which is the correct
form for KEYIN to "type in". Once the procedure "test" has been
called in this way, it is deleted again to reclaim the memory. In
this way, programs can be larger than the memory normally available
to BASIC.

-8-

**
STR$ BUGS

Alan Salmon (Bristol) reported that something like:

PLOT x,y; STR$ a
 or PLOT INK 3;20,20;STR$ 1

plotted the string not in the attributes you would expect, but in
those for the lower screen. This turns out to be due to a ROM bug in
the STR$ function. STR$ works by saving the current stream, then
setting a special output stream which allows the characters of the
STR$ to be PRINTed to an internal workspace. (This system was
exploited in the CAT_TO procedure in issue 9.) Afterwards, the
previous stream is restored, and its permanent attributes are copied
to the temporary attributes in a "setting up" operation. This means
that e.g.

PRINT INK ;STRS 1
 or PLOT INK 2;128,88,STR$ 1

are ineffective, because the setting of the temporary INK 2 is
nullified by the "setting up" done by STR$. The PLOT version will
plot in the permanent colours of the last-used stream - this might
be the lower screen - e.g. after RUN or INPUT. But if you used PRINT
(even PRINT;) more recently then the permanent colours will be those
associated with the upper screen. The whole problem can be avoided,
as noted by Alan, by e.g.:

LET a$=STR 1: PLOT INK 2;128,88,a$

STR$ is also bugged in another, better known way; an extra zero
is placed on the floating point calculator stack if you use STR$
with a number less than 1, so that e.g.:

PRINT "xyz"+STR 0.1

and

PLOT 128,88,STR$ 0.1

behave oddly. The AXES procedure in issue 3 was not protected
against this bug, and several users have noticed odd results with
certain values. Robert Dickson (Blackheath, London) suggested the
following changes:

1. Add LET x$=STR$ x before the two PLOT STR$ x statements.
 Alter PLOT STR$ x to PLOT x$.
2. Add LET x$=STR$ y before the two PLOT STR$ y statements.
 Alter PLOT STR$ y to PLOT x$.
3. Add x$ to the LOCAL statement.
4. A further (unrelated) improvement - Alter the third FOR-NEXT
 loop to:

FOR y=ystp TO yrg-yos-ystp STEP ystp

-9-

"CLIPPING" LINES

Reader David Reed asked me if I could add a RP command to draw lines
in a screen window, by "clipping" the line to fit. This should also
allow lines to be "off-screen". The more I thought about it, the
nastier the problem seemed, but I got interested and managed to
write a suitable procedure. (I think using machine code would be
rather harder.) I was afraid that I might have missed some much
simpler method that would do the trick, so I sent my first attempt
to regular contributor Ettrick Thomson for comments. He suggested
some minor changes, and added:

"Quite a problem, this "cdraw_to": saying what it has to do is
simple, almost trivial. But turning it into a computer program -!!
In confirming your approach, I divided the screen into 9
compartments, a noughts-and-crosses board, the framed window being
in the middle. This gives 81 possibilities for pairs of points
(p,q), (x,y) but symmetry reduces that to 11; each of these 11 has 2
to 8 variations"

So it seems the procedure CDRAW_TO (clipped DRAW TO) has to be
quite complicated! I also needed a CPLOT (clipped PLOT); this sets
the global variables p and q which record the graphics pen position.
The pen position can be anywhere, because p and q can have any
values. (CDRAW_TO should show any drawn lines when the pen moves
across the graphics window.) The FRAME procedure sets up global
variables specifying the left, right, top and bottom of the drawing
window, and draws a frame, and the NOFRAME procedure sets the window
to the full screen area. SCRIBBLE draws a random pattern for
purposes of illustration. (Always the same "random" pattern, to make
comparison easier.) It should be quite to add a clipped relative
draw command; real experts can try allowing arcs to be clipped! If
you like, change line 540 so that the random line goes off the
normal Spectrum screen.

10 noframe
 20 scribble
 30 PAUSE 0
 40 CLS
 50 frame 20,140,150,30
 60 scribble

100 DEF PROC cplot x,y
 110 LET p=x,q=y
 120 IF x>=lt AND x<=rt AND y>=bt AND y<=tp THEN PLOT x,y
 130 END PROC

400 DEF PROC frame a,b,c,d
 410 LET lt=a,rt=b,tp=c,bt=d
 420 PLOT lt,bt
 DRAW TO lt,tp
 DRAW TO rt,tp
 DRAW TO rt,bt
 DRAW TO lt,bt
 430 END PROC

450 DEF PROC noframe
 LET lt=0,rt=255,tp=175,bt=0
 END PROC

500 DEF PROC scribble
 510 cplot 128,88
 520 RANDOMIZE 1

-10-

530 FOR n=1 TO 30
 540 cdraw_to RNDM(255),RNDM(175)
 550 NEXT n
 560 END PROC

600 DEF PROC cdraw_to x,y
 610 LOCAL g,tx,ty
 620 DO
 630 IF p<lt AND x<lt OR p>rt AND x>rt
 OR q<bt AND y<bt OR q>tp AND y>tp THEN
 LET p=x,q=y
 EXIT IF 1
 640 REM adjust pen posn p,q to be in the window
 650 LET g=(q-y)/(p-x+.000001)
 660 IF p<lt THEN
 LET q=q+(lt-p)*g,p+lt
 ELSE
 IF p>rt THEN
 LET q=q+(rt-p)*g,p=rt
 670 IF q<bt THEN
 LET p=p+(bt-q)/g,q=bt
 ELSE
 IF q>tp THEN
 LET p=p+(tp-q)/g,q=tp
 680 IF p<lt OR rt<p THEN
 LET p=x,q=y
 EXIT IF 1
 640 LET tx=x,ty=y
 700 REM adjust dest posn x,y to be in the window
 710 IF x<lt THEN
 LET y=y+(lt-x)*g,x=lt
 ELSE
 IF x>rt THEN LET y=y+(rt-x)*q,x=rt
 720 IF y<bt THEN
 LET x=x+(bt-y)/g,y=bt
 ELSE
 IF y>tp THEN LET x=x+(tp-y)/g,y=tp
 730 PLOT p,q
 DRAW TO x,y
 740 LET p=tx,q=ty
 750 LOOP UNTIL 1
 760 END PROC

-11-

PROC TOP - setting the top line for ALTER, REF and LIST REF

I intended at one time to allow REF and ALTER to work on a
"slicer" of program lines, but the syntax got pretty nasty and I
dropped the idea. However, it is obviously useful to be able to
start searching or changing a program somewhere in the middle, so I
am giving a DPOKE to allow this. The DPOKE can be conveniently
"wrapped up" in a procedure. The first version below is for BB 3.0
users, the second one is a BB 4.0 version. The default line where
searches or changes start is the line with the cursor. You can use:
TOP 100: REF a$ to look for a$ from line 100 onwards.

10 DEF PROC top lin
 DEFAULT lin=DPEEK(23625)
 DPOKE 48804,lin
 END PROC

The following BB 4.0 version has to be more complicated because
the location we want to DPOKE now sits in paged RAM. Line CO sets up
t$ to contain code to: CALL switch page: LET HL = lin: DPOKE (the
place),HL: GOTO set normal page. Line 60 finds the string and
executes the machine coda it contains.

10 DEF PROC top lin
 20 DEFAULT lin=DPEEK(23625)
 30 LOCAL t$
 40 POKE 49146,255
 50 LET t$=CHR$ 205+CHR$ 177+CHR$ 185+CHR$ 33+
 CHAR$(lin)(2)+CHAR$(lin)(1)+CHR$ 34+CHR$ 11+
 CHR$ 246+CHR$ 195+CHR$ 193+CHR$ 185
 60 RANDONIZE USR LENGTH(0,"t$")
 70 END PROC

When REF or ALTER are used, the code we altered in paged RAM is
copied to non-paged RAM and used - unless Beta Basic "knows" that
REF or ALTER were used recently and don’t need to be copied. The
POKE in line 40 ensures that BB always decides that the code needs
copying. (If this is clear as mud - don t worry')

**
PROCs DEVAL and REVAL - saving memory

Subscriber Michael Williams (West Ealing, London) asked me for
procedures to convert all the numbers in a program to their VAL "n"
form, and vice versa, The VAL form saves 3 bytes per number, because
although you need an extra 3 bytes for the VAL keyword and a pair of
quotes, the invisible form of the number is no longer present in the
line (saving 6 bytes). However, this form is harder to read, so a
procedure to change VALs back to the normal form is desirable.

The procedures below are designed to be MERGEd at the start of a
program. Both are fairly fast. Let's go through the REVAL (add VAL
forms) procedure first. The DPOKEs to 48804 alter the first line
affected by ALTER, as explained in the previous item; BB 4.0 users
should substitute ‘TOP’ for ‘DPOKE 48804, ‘. It is necessary to
prevent ALTER working on lines 1 to 9, or the procedures will alter
themselves while running, causing problems. The sub-procedure
GET_P is a method for finding the address of the line after the
set of procedures by examining the NXTLINE system variable. In this
case, it finds the start of line 10, which allows a search of the
program area from line 10

-12-

onwards for CHR$ 14+CHR$ 0+CHR$ 0. These characters normally occur
after whole numbers (but not floating point numbers - so the PROC
won't work on these) in a program line. If there is a successful
"find", the loop in line 2 backs through the line, checking for
valid digits and building up the complete number in the string t$.
Then we can use ALTER to change the number (possibly at multiple
locations) to its VAL form. The process continues until all whole
numbers have been converted.

1 DEF PROC renal
 DPOKE 48604, 10
 LET $t=CHR$ 14+CHR$ 0+CHR$ 0
 get-p
 DO

LET p=INSTRING(p,MEMORYS()(TO DPEEK(23627)),a$)
 EXIT IF p=0

2 LET t$=" ",t=p
 DO

LET t=t-1
 LET p$=CHR$ PEEK t
 EXIT IF p$<"0" OR p$>”9”
 LET t$=p$+t$
 LOOP

3 IF LEN t$<>0 THEN PRINT "ALTERiny: ';t$
 LET x=VAL t$
 ALTER (x) TO "VAL "+CHR$ 34+t$+CHR$ 34
 4 LET p=p+1
 LOOP

DPOKE 48804,1
 END FROC

The DEVAL procedure has many similarities to REVAL. A program
search is done for VAL "#" (i.e. VAL of any quoted character) ; when
this is found ALTER makes the change. This is done for VAL “##”, VAL
"###" etc. up to 5 characters, using the outer FOR-NEXT loop.

5 DEF PROC deval
 DPOKE 48304,10
 FOR s=1 TO 5
 LET a$=”VAL “+CHr$ 34+STRING$(s,”#”)+CHR$ 34
 get_P
 6 DO

LET p=INSTRING(p,MEMORY$()(TO DPEEK(23627)),a$)
 EXIT IF p=0
 LET t$=””
 FOR n=0 TO S+2
 LET t$=t$+CHR$ PEEK (p+n)
 NEXT n
 7 LET X=VAL t$ (3 TO 2+s)
 PRRINT "ALTERinq: ;t$
 ALTER (t$) TO (x)
 LET p=p+1
 LOOP

8 NEXT s
 DPOKE 48804,1
 END PROC

9 DEF PROC get_p
 LET p=DPEEK(23637)
 END PROC

-13-

While editing these PROCs, I discovered a bug in REF! I did REF "
PRINT " and found it worked only once. This turns out to be because
the line REF found also had an ALTER (reference) command in it. When
I pressed ENTER, the syntax check of ALTER set some system variables
up (e.g. a flag saying "ALTER, not REF" was set) and since these are
also used by REF, I got a corrupted line where the next PRINT
occurred. The routine needs to be altered to avoid touching the
system variables during syntax checking, but I'll leave it for the
moment. (Well, nobody has mentioned it in 3 years!)

**
DISC NEWS

SWIFT DISC

User Harry Paine (Foleshill, Coventry) reports that BB 3.0 and BB
4.0 seem to be reasonably compatible with the Microdrive Emulator
that SixWord market with the Swift Disc. Programs, code and data
LOAD, SAVE and VERIFY O.K., programs MERGE O.K. and normal disc
PRINT and INPUT statements seem to work. The only thing that fails
is the extended MOVE command.

DISCIPLE and PLUS D

Michael Williams (West Ealing, London) received his updated Disciple
version of BB and reported no problems, except that he got double-
spacing in his listings. This is because I wrote the print routine
to do a line feed after carriage return, like the Microdrive "t"
channel, whereas Michael's printer does an automatic line feed. POKE
54989,24 stops the Disciple version's line feed; POKE 54989,32
restores it.

The CAT_TO procedure in issue 9 works with the Disciple, provided
you have the Disciple/PLUS D version I supply on tape. The catalogue
format is more complicated than that for Discovery or Microdrive,
and a bit harder to split up into separate file names, since the
entries vary in length.

I am sorry to say I discovered a bug in some of the Disciple tapes
I've sent out. The tapes incorporate a system to prevent disc errors
turning off BB which can cause oddities during INPUT. More recent
tapes, incorporating the EOF function, have been fixed. The older
tapes can be fixed by the program below:

10 FOR n=50781 TO 50793: READ a: POKE n,a: NEXT n
 20 DPOKE 54974,50787
 30 DATA 207,11,205,185,24,43,254,18,200,225,195,197,214

"MISER" PROGRAM

Charles Buzard of 13, Grove Wood Close, Chorleywood, Herts. WD3SPU
has devised a comprehensive Beta Basic program to update information
on his portfolio of Stocks, Shares and Savings. If anyone is
interested in having a copy, write to Charles and he will reply with
full details about it. It is available only on microdrive cartridge.

-14-

**
A STRANGE THING HAPPENED TO ME WHILE BROWSING IN A NEWSAGENTS...

Not long ago I happened to look at (subscriber) Mike Tooley's ON
SPEC column in Everyday Electronics magazine. Someone asked him if
you could wire a Spectrum ROM into an Amstrad CPC computer. "Ha!" I
thought; "no good - you'd have to re-write anything to do with the
screen, sound or keyboard. Anyway, CPC's have pageable RAM in the
lower 16K of memory, so there is no need for wiring - just load a
copy of the Spectrum's ROM from tape!" So I walked off, muttering
"Interesting problem..." and falling over waste bins.

Gripped by enthusiasm, I wrote routine to tapes onto the Amstrad,
then a routine to "patch" a Spectrum ROM copy loaded in this way so
it handled CLS and printing on the Amstrad screen. After a few other
changes, when I set the "ROM" going, it set up all its system
variables, printed the copyright message and sat there waiting for a
keypress. Progress! Next I had to re-write the keyboard scan, which
was harder, then the scroll routine... better get BEEP working too,
oh yes, PLOT, DRAW, CIRCLE, BORDER. Now Spectrum Basic programs run
O.K.! Alright, how about COPY to dot-matrix printers? Why not!
Better be able to SAVE Spectrum format tapes - and use the disc
system too! The Disc system is tough - it uses memory all over the
place, and won't turn the drives off. Finally I get it working.

Next it occurs to me it would be nice if machine code programs
that directly change Spectrum screen memory worked too... get that
working, though with a speed penalty. By this time I have written
about 3K of machine code, which means (with the CPC screen memory
usage) that a CPC464 has about 20K free. Not really enough for
running BB 3.0 - but on a CPC6128, the screen memory can be paged
out, so almost the normal 41K could be used, if I re-write things a
bit... About this time. I begin to realise, "This is taking a LONG
TIME! I'm supposed to be finishing the PLUS 3 version of BB! Why am
I writing this oddity? is it hysterical reaction to the PC game
conversion I did last month? Can I actually sell this?" I can't sell
Spectrum ROMs on tape, for copyright reasons, although all that is
needed is a simple SAVE "name" CODE 0,16384. Users would have to
provide their own copy. Perhaps some people want to run Spectrum
Basic programs on their own or a friend's CPC? Hacker types will
enjoy being able to alter the "ROM". Quite a lot of machine code
routines should work, too - if I spend a bit more time, even BB 3.0
(on the CPC6128). However, before I do that, I'd better try a little
market research - anyone interested? Comments please!

**
Making variables immune to CLEAR in Beta Basic 4.0

This tip is from John Luby of Duns, Berwickshire:
"RAM disc variables are immune from RUN or CLEAR. I find that it is
worth-while having RAM disc arrays of one element, say DIM
!sortflag(1), to hold important variables that cannot simply be re-
initialised. This avoids cautioning database users, etc., not to use
BREAK and RUN."

**
ALTERING THE ACTION OF THE PRINT COMMA

Normally, PRINT items separated by commas are positioned 16
characters apart, but sometimes a spacing of 8 would be more
convenient. POKE 52185,248: POKE 52187,8 achieve this for any CSIZE
apart from zero.

-15-

**
READERS LETTERS

Dear Andy,

I am using a Euroelectronics LPRINT III... 'The value 0 or 1 in
location 60921 determines whether the control codes are sent
unmodified or are dealt with by BB... I tried the value 0.
Everything was fine until I tried LIST FORMAT 1 or 2. If there was a
procedure call after a colon, first, a jump was made in the LLISTING
before the procedure name. Second, the value in location 23681 was
altered.

lain Rendall, Edinburgh

(Iain is using location 23681 for a paged memory system.) If there
is a leading space to a procedure name, BB does a backspace to
delete it and preserve correct line-up in indented listings. This
caused the problem, as the backspace character was handled by the
ROM, and the ROM LPRINT routine uses 23681. (That location is
labelled 'not used' in the Spectrum manual but this is wrong - it is
the most-significant byte of the LPRINT ' position. This is usually
91; 91*256=23296, which is the printer buffer start.) Using
backspace was a mistake, because many printer interfaces won't deal
with this character. (I don't know why I didn't notice this before!)
So let's delete the leading space another way by just avoiding
printing it; the pokes below will do the trick for all versions of
BB 3.0 or 4.0 (I think!).

POKE 58567,19: POKE 58568,51: POKE 58569,51

Dear Andy,

I am fourteen years old and computer studies is one of the subjects
I study at school. I use Beta Basic 4.0 a lot and it is much more
valuable than any other piece of software I have got. One question I
have got is how do you print on the bottom line using another
character size? I've tried PLOT but that only prints on the second
from bottom and PRINT #1 only prints using the normal character set.
Also is there any way that I could obtain a copy of 'TURTLE' as
there isn't one on my tape.

David Cowell, Romford, Essex.

Quite a lot of people seem to use BB as part of Computer Studies
courses, which is very pleasing. Regarding your questions, I decided
CSIZE should be inactive in the editing area, to prevent lock-ups
when e.g. CSIZE 176 was selected for printed output. Both BB 3.0 and
BB 4.0 allow PLOTed strings to "hang down" from a y-coordinate of 0,
so that the text is in the top part of the editing area. This allows
64-column output in this area. BB 4.0 has an improved PLOT routine
to plot points in the lower part of the screen, but I discovered
when you wrote that I forgot to alter the PLOT strings command in a
similar way. With Beta Basic 4.0 ONLY, the POKES below will do the
job:

10 DPOKE 63486,63131
 20 DPOKE 52609,63118
 30 PLOT CSIZE 4,8;0,-1;"Top line"
 40 PLOT CSIZE 4,8;0,-9;"Bottom line"
 50 PAUSE 0

There should be a copy of "TURTLE" after BB 3.0 on your tape. If
not, I'll send you one. I think a few people missed getting
instructions for the program, too - if so, just send a S.A.E.

-16-

Dear Andy,

I sometimes get odd values for the looping line number of a FOR-NEXT
loop when I LIST DATA. Why?

J. Kuiper, Amsterdam

For greater speed, BB doesn't actually use looping line numbers at all.
Instead, it keeps a record of the address of the looping line, so that NEXT
can loop back immediately, rather than searching down the program for the
required line. LIST DATA therefore has to look at the specified address and
read the line number from there. It you have altered the program since the
FOR-NEXT loop was used, there may no longer be a line number at that
address, and you will get odd results. Try entering and running a simple
FOR-NEXT loop line; then delete the line and LIST DATA

Dear Andy,

I would like to write a procedure, using the SAVE command with a
slicer, to save a program without the variables, but leaving the
variables intact so that the program can continue running where it
left off. This has led me to notice that it is impossible to save a
program, with line 0 intact, using the slicer. Can this be
rectified?

Robert Dickson, Blackheath, London

With both BB 3.0 and BB 4.0, POKE 54524,0 will allow slicer SAVES to include
line 0. This also makes the default line for LIST line 0. POKE 54524,1 to
return to normal.

Dear Dr. Wright,

I am a 17 year old 'A' level student, who uses the Spectrum and BB
for programming. Could you recommend a good assembler/monitor
program for m/c?

I used the following program:

10 INPUT INKEY$
 20 GO TO 10

The key pressed is printed in the input line. Can you explain?

Kevin Allen, Nottingham

DEVPAC seems to be widely recommended, although I think it is pretty awful.
(I use Pyradev on the CPC.) Regarding INPUT, if the command is followed by a
simple variable name, the value of the variable can be entered. Anything
else is treated like a print command for the lower screen, so that your line
10 acts like PRINT #1; INKEY$. Nothing is actually INPUTed, so INPUT doesn't
wait for you. The lower screen is cleared after each "INPUT", so you just
get a brief flicker. The command is designed to allow e.g. INPUT "size ";s
but you can also use INPUT "" to simply clear the lower screen and reset the
"Scroll?" counter. Try a FOR-NEXT loop printing the numbers 1 to 100, with
an INPUT "" inside the loop.

**
BB NEWSLETTER, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM B14 6LQ

Scanned, Typed, OCR-ed, and PDF by

Steve Parry-Thomas 3rd November 2004.
This PDF was created to preserve this

Newsletter for the future.
For all ZX Spectrum, Beta Basic
And www.worldofspectrum.org users

(PDF for Michael & Joshua)

http://www.worldofspectrum.org/

