
BETA BASIC NEWSLETTER NO. 4

Hello - bit late again, I fear, but at least each issue is pretty
"meaty" - I initially envisaged something like 4 pages per
Newsletter!

Chris Nash (Bracknell, Berks.) and Daniel Ben-Sefer (Degania B.,
Israel) report that the readnumber procedure in issue 3 is not
completely "idiot-proof", since it is possible to enter two decimal
points. Daniel's solution is the shortest: change line 1090 to:

1090 IF (a$>="0" AND a$<="9") OR (decimal AND a$="." AND
 INSTRING(1,b$,".")=0) THEN
 LET b$=b$+a$

He also sent a correction to PROC and from issue 2:

7 LOOP UNTIL 1
 LET q=LEN f$-(LEN f$-q)*(0<INSTRING... etc.

Michael Charlton (who is a retired physics teacher from
Pontefract) reported that PROC axes in issue 3 fails with certain
values with Statement lost, 100:24. This is because BB with a
version number less than 22 will not handle a FOR-NEXT loop of zero
times, if the NEXT is on the same line as the FOR. The solution in
this case is to put the NEXTs on separate lines.

Jesper Hertel (Vaerøse, Denmark) (by the way, I have sworn off my
previous habit of referring to non-U.K. subscribers as living in
e.g. (Norway) while U.K. subscribers live in places like (Milton
Keynes) - it smacks of Anglo-centrism!) where was I... yes, he
reported that FILL has no check on its Y coordinate, and that EDIT
and INPUT do not respond correctly to the up and down cursor keys
after ON ERROR has been active earlier in the same program run. So
watch out!

Manlie Reeve is a 25 year old factory worker, making brass ware.
He says he says less for each computer he buys, and he wonders how
cheap they will get. I guess that from now on computers won't get
much cheaper - they will just get better for the money - look at
Amstrad's new IBM beater.

Bo Nordstrom.(Siriusgatan 66, S-415 22 Gothenburgh, Sweden) is a
31 year old Polytechnic student. He doesn't know anyone who is
interested in computers, and he would like to correspond with anyone
who is.

One thing that disappoints me is that despite the great variety
of BB users, only a tiny number are female - I wonder why?

A number of subscribers have asked for news of a Spectrum 128K
Beta Basic. Unfortunately, nothing much is happening on this front.
This is for several reasons. First, the RAM paging on the 128 is
very limited - it is only possible to switch the top 16K of memory.
(In contrast, a PCW 256 can switch any of its 16K blocks into any
quarter of the memory.) This is no great problem for a game, since
the actual program is likely to be only about 8 to 16K long. It can
sit in memory all the time, and switch in a new block of data when
it is needed; for example, when a new room or level is reached. Now
consider a Basic interpreter - ideally, one wants to give the user
the maximum program and data area, so the best place to switch would
be the lower 16K. You still have to do a bit of fiddling to call

-2-

routines in the main ROM, but this is quite possible, as shown by
Interface 1. However, if the Basic interpreter has to overlie the
Basic program and data area in the top 16K, you've got problem.
Every routine that reads or writes to part of the program or
variable area will have to do something clever to allow it to work
when it is switched out of memory (or appear to do so) his is quite
possible, but it needs thousands of program hangs and a lot of
tricky new programming, and the result will run rather slower than
the original - in some cases, much slower Certainly it would be
possible to squeeze BB into one 16K block by hiding some routines in
switched RAM - but the improvement in available RAM isn't large.

In addition to feeling that the 123K machine is poorly designed,
I see that the magazines for fairly cheap computers are
concentrating more and more on games. More powerful computers are
now quite affordable. So were does this leave a 128K Beta Basic?
Selling mostly as an upgrade to a smallish pool of Spectrum users
who are interested in programming and have bought a 128+ Spectrum I
fear. Even a small ad costs about £280, so one wonders if the
programming effort is worthwhile. I leave open one possibility - a
version that is similar to BB 3.0 but allows use of the RAMdisc and
perhaps sound.

In case you are wondering, Betasoft is still going strong, mostly
as a programming subcontractor for larger companies with more
marketing skill and less programming talent.

**

FAT CHARACTERS

No no, not fat people! I mean those chunky letters that many
other computers use. Some of you might like to use such characters
but don't fancy designing a new character set. In fact chunky
characters can be produced by a simple doubling of each pixel in the
normal Spectrum character set. Below, the method is applied to the
entire screen by line 50; the principle might be better applied to
UDGs or GET screen blocks, but I leave that up to you.

10 CSIZE 0
 20 FOR n=32 TO 127
 PRINT CHRS n;
 NEXT n

30 PRINT
 LIST

50 FOR n=16384 TO 22527
 POKE n,OR(PEEK n,PEEK n/2)
 NEXT n

-3-

**
INTERACTIVE WINDOW DESIGN

This contribution from Dave Trebilcock (Cheshire) makes it much
easier to work out WINDOW co-ordinates - it even create the required
program line. Here's Dave's explanation:

The routine consists of three procedures:
 WINDO which does the main work
 WDRAW to draw an outline of the window
 SETUP to declare the finished window and add the declaration
 into the current program if desired.

A window is drawn in the middle of the screen which can then be
manipulated using the cursor controls 5-8. Without CAPS LOCK the
size of the window is adjusted, with CAPS LOCK the position
of the window is adjusted.

The relevant co-ordinates are constantly displayed on the INFUT line
and the current screen is unaffected as the WINDOW outline is drawn
using OVER (PAPER colours may be affected though.)

PROC WINDO has 2 parameters -
 NUM defines the WINDOW to be declared
 PLIN is the program line to be declared (ignored if ZERO)

After positioning the window, pressing "E" will declare the window.
The window declaration can be abandoned at any time by pressing "Q".

20 DEF PROC windo num,plin
 30 LET x=88,y=119,w=40,L=40,z$="E5678"+CHR$ B+CHR$ 10+CHR$
 11+CHR$ 9+"Q",key=O
 DEFAULT num=l,plin=0
 40 DO UNTIL key=1 OR key=10
 50 wdraw
 PRINT #1;AT 0,0;"x = ";x;" y = ";y,"width = ";w
 ;" length = ";L;" "
 60 DO
 GET k$

LET key=INSTRING(1,z$,SHIFT$(1,k$))
 LOOP UNTIL key
 70 wdraw
 80 IF key=2 AND # THEN LET w=w-B
 90 IF key=5 AND x+w<256 THEN LET w=w+8
 100 IF key=4 AND y+L-2>y+7 THEN LET L=L-8
 110 IF key=3 AND y-L>6 THEN LET L=L+8
 120 IF key=6 AND x>7 THEN LET x=x-8
 130 IF key=9 AND x+w < 256 THEN LET x=x+8
 140 IF key=7 AND y-L>6 THEN LET y=y-B
 150 IF key=8 AND y<168 THEN LET y=y+8
 160 LOOP
 170 IF key=1 THEN setup
 180 END PROC

190 DEF PROC wdraw
 200 OVER 1
 PLOT x,y
 DRAW TO x+w-1,y
 DRAW TO x+w-1,y-L+1
 DRAW TO x,y-L+1
 DRAW TO x,y
 PLOT x,y
 OVER 0
 210 END PROC

-4-

220 DEF PROC setup
 230 WINDOW num,x,y,w,L
 WINDOW num
 240 IF plin THEN KEYIN STR$ plin+" WINDOW "+STR$ num+","+ST
 R$ x+","+STR$ y+" , "+STR$ w+","+STR$ L
 250 END PROC

**
PROC cpy - 64 column text COPY

I mentioned in an earlier Newsletter that a SCREEN$ that
recognised 4*8 pixel characters would be quite easy to write, and
it would allow text screen dumps to a full-width printer. I actually
meant that this would be easy to do in assembly language, but
prodding from subscribers has induced me to write a Beta Basic
version. The procedure assumes you are in CSIZE 4,8 to start with.

I used a slightly inelegant method that prints each of the 4X6
characters with a leading space at a (hopefully) convenient screen
location. GET is used to pick up the data for this 8*8 block, and C$
accumulates the results. In the end C$ holds a complete character
set, in the normal 8 bytes/character format. Now we need to alter
the system variable CHARS so that SCREEN$ will look at the character
set in C$ rather than the one in ROM - see line 1040. Note, however,
that only 4*8 characters after a leading 4*8 space will be
recognised. The loops starting at 1060 GET each of the characters on
the screen and print them so that only one required half of the GET
block falls into the position looked at by SCREEN$. The ON ERROR
statement is s intended to return you to the normal character set if
you press BREAK. Charles Buszard suggests that the 8 in line 1060
could be a variable allowing copying to cease at various points down
the screen.

1000 DEF PROC cpy
 LOCAL c$,g$,x,y,n
 1010 LET c$=""
 1020 FOR n=32 TO 127
 PRINT AT 21,0;" ";CHR$ n
 GET g$,0,7
 LET c$=c$+g$(2 TO)
 NEXT n
 1030 DELETE g$
 1040 DPOKE 23606,LENGTH(0,"c$")-256
 1050 ON ERROR 1120
 1060 FOR y=175 TO O STEP -8
 1070 FOR x=0 TO 252 STEP 4
 1080 GET g$,x,y
 1090 PLOT CSIZE 8;4,7;g$
 1100 LPRINT SCREEN$ (21,0);
 1110 NEXT x
 LPRINT
 NEXT y
 1120 DPOKE 23606,15360
 1130 END PROC

-5-

PROC plist - listing the names and locations of all procedures.

I have received a number of requests for a procedure (or new

command) to do this, plus contributions from M.J. Smith (Lancs.) and
A.M. Yarnell (West Midlands). Here is my own attempt, which I hope
will prove useful.

The general idea is to look through the program (using MEMORY$,
INSTRING$, and some DPEEKed system variables) for CHR$ 13's (the end
of line marker) followed a bit later by DEF PROC (make sure you
enter this as a keyword!). You cannot just look for DEF PROC alone,
or you will find lines like LET x=129; the invisible five-byte form
of 129 contains CHR$ 129, which is the token for DEF PROC... Having
found a DEF PROC, get the line number out of the line header
information, and read the procedure name from after the DEF PROC.

10 DEF PROC PLIST
 CLS
 PRINT "PROCEDURES:"
 PRINT
 LET A=DPEEK(23635)
 20 DO
 LET A=INSTRING(A,MEMORY$()(TO DPEEK(23627)),CHR$ 13+
 "####"+" DEF PROC ")
 EXIT IF A=0
 LET N$=""
 30 LET lnum=PEEK (a+l)#256+PEEK (a+2)
 LET a=a+5
 40 DO
 LET A=A+l
 LET C$=CHRS PEEK A
 EXIT IF C$=CHR$ 13 OR CS-":"
 LET N$-N$+C$
 LOOP
 50 PRINT NS;TAB 22; USING "####";lnum
 60 LOOP
 70 END PROC

BETA BASIC AND DISC SYSTEMS

Our sales and the postbag indicate that the OPUS Discovery disc
drive is selling well to BB users - deservedly so, in my opinion.
The standard BB can be transfered to OPUS disc and mostly works, but
error handling, EOF, simplified LOAD/SAVE etc. and LPRINT will be
faulty. For those who don't know, there is a special version, Beta
Basic 3.0D, for this system, which solves the problems. It comes on
tape, with instructions, for £2.00. (£3.00 outside Europe.)

We have some interesting OPUS-specific contributions but they may
be too specialised to publish.

Francis Glassborow of Southfield Software has managed to get BB
working with the SPDOS disc system. You can get the required paging
program from him for (I think) £1.50. The address is:

SOUTHFIELD SOFTWARE, 64 Southfield Road, OXFORD OX4 1PA

-6-

PROC rotake - rotating characters by 90 degrees.

Michael Charlton (Pontefract, W. Yorks.) sent a sent of character
manipulation procedures that included a "character rotate" facility
- used twice, it gave an "Australian" character set, making for very
odd listings! This worked fine but was rather Basic is not a fast
language where bit manipulation of this sort is required. I was
stimulated to write a machine code routine to turn characters by 90
degrees, which turns out to be useful U1 for a variety of purposes.
(See PROC dump below.)

The source location of the 8 bytes to be rotated is determined
by the first parameter. Normally, the results are put back into this
location after the rotate, but a second parameter can be used to
specify another destination. This is particularly useful if the
source is the ROM character generator! (Note: this starts at 15616).
The routine is automatically modified to work correctly if either
source or destination is in screen memory, provided you do not
straddle a character square boundary. Line 10 demonstrates rotation
on of screen memory whereas line 20 prints all the UDG`s, rotate
their definitions (not screen memory), prints them etc. till they
are right way up again. Note that PROC rotate is an anti-clockwise
rotate - the fastest way to get a clockwise version is to alter line
110 to contain three RANDOMIZE USR cd`s. Line 30 uses the ROM as a
source and the screen as a destination for the rotated result.

The machine code is poked into the locations beginning at "cd" on
the first call only, using the assumption that if the first byte is
as expected, the poke must have been done already ! I have used the
printer buffer, but you may prefer to locate the code above RAMTOP -
the procedure "m/c" in this issue may be useful

10 PRINT "HELLO WORLD !"
 FOR n=16384 70 16400
 rotate n
 NEXT n

20 KEYWORDS 0
 FOR R=1 TO 4
 FOR n=144 TO 164
 PRINT CHR$ n;
 NEXT n
 PRINT
 FOR c=USR "a" TO USR "u" STEP 8
 rotate c
 NEXT c
 NEXT r
 KEYWORDS 1

30 rotate 15624,16384

60 DEF PROC rotate src,dest
 DEFAULT dest=src
 LOCAL n,a,cd
 LET cd=23296

70 IF PEEK cd<>33 THEN
 RESTORE 12O
 FOR n=cd TO cd+37
 READ a
 POKE n,a
 NEXT n

-7-

80 DPOKE cd+1,scr
 DPOKE cd+29,dest
 90 IF src,16080 AND src <22528 THEN
 POKE cd+16,36
 ELSE POKE cd+16,35
 100 IF dest>16383 AND dest <22529 THEN
 POKE cd+34,36
 ELSE POKE cd+34,35
 110 RANDCMIZE USR cd
 120 DATA 33,0,0,30,128,14,8,6,8, 229,126,163,254,1,203,18,35
 ,16,247,225,213,203,11,13,32,237,6,8,33,144,128,241,47,
 119,35,16,250,201
 130 END PROC

PROC dump - graphics COPY to a dot-matrix printer

Even if you already have a printer interface that allows screen
dumps of graphics, this procedure may be useful, since it can easily
be modified to copy any part of the screen. You will need PROC
rotate given earlier, as a sub-procedure. Make sure the location of
the machine code doesn't conflict with your printer driving
software. The main reason that screen dumps are usually done in
machine code is that the printer requires the state of all the bit
7's of the first character to be sent as one byte, then-, all the
bit 6's, etc. This is slow - but if you rotate the data for the
first character anti-clockwise, all the bit 7's will fall into the
bottom byte of data and it can be sent easily, followed by the bit
6's in the second from bottom byte, and so on.

Printer output should be going to a "b" type stream that will
accept all byte values. Line 20 should set up the printer to advance
by the length of eight dots at each line feed. Line 30 sets B$ to
the characters needed to say: “256 bytes of bit-image data follows".
I am using an EPSON RXSO - you may need to use different control
codes for another printer. Usually, the last character in b$ will be
"number of 256's" and the second to last will be "number in addition
to the 256's" for the bit-image byte count. R and C in line 40
decide the row and column areas to be dumped. The expression after
GET converts R and C to the co-ordinates that are required by the
command. Line 5O should reset the line feed distance back to normal.

10 DEF PROC dump
 15 LOCAL a$,b$,r,c,b
 20 LPRINT CHR$ 27;"A";CHR$ 8;
 30 LET b$=CHRS 27+"K"+CHR$ 0+CHR$ 1
 40 FOR r=0 TO 21
 LPRINT b$;
 FOR c=0 TO 31
 GET a$,c*8,(21-r)*8+7
 rotate LENGTH(0,"a$")+l
 FOR b=9 TO 2 STEP -1
 LPRINT a$(b);
 NEXT b
 NEXT c
 LPRINT CHR$ 10
 NEXT r
 50 LPRINT CHRS 27;"A";CHRS 11;
 END PROC

The procedure takes about 9 seconds per line on the RX-80, or
about 3 and a half minutes per screen.

-8-

PROC kill - unproved block delete.

Beta Basic DELETE command makes sure you know exactly what you
are doing by checking that any line numbers you specify really exist
Sometimes this can be inconvenient - for example, if you are loading
"overlay" parts of a program at lines between 5000 and 7999, you
might want to DELETE 5000 TO 7999 before MERGEing the new section.
(This "overlay" technique allows a program to be cut into chunks
and it is common in large business program - BB can use the memory
saving too! Subscriber Charles Buszard has been exploiting it the
method.)

To avoid – “No such line” errors, use this simple procedure:

100 DEF PROC kill f,l
 KEYIN STR$ f+” REM “
 KEYIN STR$ l+” REM “
 DELETE f to l
 END PROC

Note: The kill procedure, or a DELETE command, should be higher in
the listing (at smaller line numbers) than the lines it deletes.

**
REMOVING EXTRA XOS, YOS, XRG AND YRG COPIES.

Users of the TRL Disc Interface and some other users may have to
"turn on" Beta Basic more than once, because their interface causes
Beta Basic to lose control of the system after LOAD and MERGE
commands. This can be done by RANDOMIZE USR 58419. This USR routine
sets up the special variables XOS, YOS, XRG and YRG each time it is
used. This can create multiple copies which accumulate if CLEAR or
RUN are never used. (LIST DATA will show if this has happened.) They
can be eliminated by the routine below, without loss of any other
variables.

10 REM get rid of extra xos, etc. A$ can be in use already
 20 IF PEEK (DPEEK(23627)+32)<>184 THEN STOP
 30 POKE DPEEK(23627)+32,65
 40 POKE DPEEK(23627)+33,29
 50 POKE DPEEK(23627)+34,0
 60 DELETE a$
 70 GO TO 20

NOTE: You can use POKE 53754,201 to prevent RANDOMIZE USR 58419 (and
RUN and CLEAR) from creating the special variables - but you may
have problems if you later use RUN or CLEAR; you should keep at
least one copy of the special variables.

**
LLISTINGS.

BB versions after 20 (PEEK 47272 for version no.) allow BB to
control line length and indent long program lines correctly to (I
hope) any printer interface. Location 57503 controls line length and
it should be poked to a value less than or-equal to the line length
Your printer or interface would otherwise produce. The initial value
is 80 - if you are using a ZX-type printer, POKE 57500,32.

-9-

**
PROC chardes - character designer

In Newsletter 1 I suggested that a Beta Basic character designer
would be useful, and several subscribers sent creditable
contributions, for example, Bo Nordstrom (Gothenburgh, Sweden). I
also wrote one myself, which is slightly better in some ways; it is
listed below. It is not completely error-trapped, and the various
component procedures could be usefully made more independent by
using more parameter passing, but I hope it will form a useful
source of ideas.

The main procedure, CHARDES, accepts input and calculates the
location of the desired character pattern (adr) and the number of
bytes in it. It copes with either UDG's or BB's small character set.
Next the current data is displayed as black or yellow spaces, using
PROC display. PROC ed lets you move a cursor around the data, using
the cursor keys. The DELETE key reverses the colour at the cursor
position. ENTER when you are finished. Now PROC scread reads the
data from the screen and places it as binary into a string array,
and finally PROC pokeback replaces the modified data at the original
location.. The slightly unconventional approach of reading the data
from the screen means that PROC ed does not have to worry about
changing both screen and data, which makes it faster.

PROC ed may have general uses, so I will describe it in some
detail. The parameters ll,rl,tl and bl are Left Limit, Right Limit,
Top Limit and Bottom Limit for cursor travel. (I actually made no
use of the variability of these parameters, and the other bits of
PROC chardes are less flexible, but it should simplify other uses of
the procedure.)

The procedure uses PAPER 8 so that printing does not alter the
paper colour, and INK 9 to ensure the cursor shows up.

The ON section is a fast way of responding to various keys, and
needs some explanation. What's this ON k-b OR k<B OR k>13? Well, an
expression like k>13 is evaluated as either 1 (true) or 0 (false). A
number OR 1 gives 1; a number OR 0 gives the original number. (This
is slightly peculiar to my machine codeish brain - the BB bit-by-bit
OR seems more obvious - but that's the way it is.) The overall
effect is that if k is outside the limits 8 to 13, the expression
after ON evaluates to 1, whereas if k is inside the limits, the
result is k-b - namely, 2 to 7. Therefore an illegal value for k
always goes to the first statement in the ON list, which could be
just a colon if you like. The other statements correspond to
characters 8,9, 10,11,12 and 13, which are left, right, down and up
cursors, DELETE and ENTER. Different keys would be more convenient
if you have a rubber key Spectrum.

The logical expressions in the LET statements after ON give a
move of one square if "limit not exceeded" is TRUE. The PRINT
expression corresponding to DELETE uses a bit of fiddling to get the
PAPER attribute for the square with the cursor. If it is e already,
it will be 0 next time, and vice versa. The EXIT IF 1 corresponds to
the ENTER key, and it will cause an unconditional jump out of the
DO-loop.

-10-

10 DEF PROC chardes
 LOCAL a$,c$,n,b,adr,c,r,s
 20 PRINT "UDG or Small characters? (U/S)"
 DO

GET a$
 LET a$=SHIFT$(l,a$)
 LOOP UNTIL a$="U" OR a$="S"
 30 PRINT "Character?"
 GET c$

40 IF a$="U" THEN LET c$=SHIFT$(1,c$)
 50 IF a$="U" THEN LET s=8
 LET adr=65368+(CODE c$-65)*s
 60 IF a$="S" THEN LET s=7
 LET adr=51291+INT (CODE c$/2-16)*s
 70 display
 80 ed

90 DIM a$(8,8)
 100 scread a$
 110 poKeback
 120 END PROC

130 DEF PROC display
 CLS

FOR n=adr TO adr+s-1
 FOR b=1 TO 8
 PRINT PAPER 6-VAL (BIN$(PEEK n)(b))*6;" ";
 NEXT b
 PRINT
 NEXT n
 END PROC

140 DEF PROC ed ll,rl,tl,bl
 150 DEFAULT 11=0,rl=7,tl=0,bl=7
 160 LOCAL r,c,k$,k
 170 LET c=ll,r=tl
 PRINT AT r,c; PAPER 8; INK 9;"*"
 180 DO

190 GET k$
 LET k=CODE k$
 PRINT AT r,c; PAPER 8;" "
 ON k-6 OR k<8 OR k>13
 BEEP .1,1
 LET c=c-(c>ll)
 LET c=c+(c<rl)
 LET r=r+(r<bl)
 LET r=r-(r>tl)
 PRINT AT r,c; PAPER 6-AND(BIN 111000,ATTR (r,c))/8;
 “ “

EXIT IF 1
 200 PRINT AT r,c; PAPER 8; INK. 9;"*"
 LOOP
 END PROC

210 DEF PROC scread REF a$
 FOR r=0 TO 7
 FOR c=0 TO 7
 IF AND(BIN 111000,ATTR (r,c))=0 THEN
 LET a$(r+l,c+l)="1"
 ELSE LET a$(r+1,c+1)="0"
 220 NEXT c
 NEXT r
 END PROC

-11-

230 DEF PROC pokeback
 FOR n=1 TO s
 POKE adr+n-1,VAL ("BIN "+a$(n))
 NEXT n
 END PROC

THE SPECTRUM BASIC MERGE BUG.

Yes, there is one! BB users now and then mention crashes when
MERGEing large programs when memory is tight. This is due to a fault
in a ROM routine called (by Dr. Ian Logan) RECLAIM. It shuffles
memory about as variables and program lines are moved from a
temporary storage area into the program area. (This can cause a
delay of many seconds sometimes.) Unfortunately, RECLAIM shuffles a
little too much memory, and this can cause the stack to be over-
written if a large line or variable is moved and memory is tight.
This has nothing to do with Beta Basic, apart from its memory
consumption, but be warned! (I know of no way to check if a crash
will occur in a particular case.) This bug seems to be little known
- I only found it myself when I did a byte-by-byte comparision of
the debugged Scandinavian Spectrum ROM and the normal ROM.

**
PROC adr - getting the screen address of a pixel

Sometimes one wants to know the address in memory of a particular
point on the screen. This is easy to do in machine code, using a ROM
subroutine, but difficult and slow in Basic. PROC adr constructs a
short machine code routine in a$ which consists of: "put co-
ordinates in the correct register: call ROM routine: put screen
address in a convenient register: return" The code in the string can
itself be called, using:

LENGTH (0,"a$")

to find its location. The screen address comes back, from the
procedure in a variable you specify, such as "slot". You might find
this PROC useful (after modification to work with rows and columns)
with PROC rotate in this issue.

10 adr 100,100,sloc
 PLOT 100,100
 PAUSE 100
 POKE sloc,255

20 DEF PROC adr x,y, REF a
 LOCAL a$
 LET a$=CHRS 1+CHR$ x+CHR$ y+CHR$ 205+CHR$ 170+CHRS 34+C
 HR$ 68+CHR$ 77+CHR$ 201
 LET a=USR LENGTH(0,"a$")
 END PROC

-12-

**
PROC paglist - paginated listings

G.J. Doodson (Telford, Shropshire) wrote to see if I could
suggest a method of paginating listings at desired points. I tried
various control codes inserted into the listing in an effort to
force pagination, but had no success. Instead, I modified PROC slist
from issue 2. The resulting PROC paglist looks through the listing
and paginates if it finds "page" at the start of a line. (INSTRING
is used so that you can use a character before "page", or not.) Page
is a dummy PROC that simply acts as a marker. Alternatively, you
could use:

REM page

PROC paglist comes in two forms, depending if you want to list to
a printer or the screen. The version below is for printers that
respond to CHR$ 12 by doing a form feed. Stream 3 should be open for
text output, and stream 4 for "b" type (any codes) output. To work
with the screen, alter line 20 to:

IF etc............ THEN
 PAUSE 0
 CLS
 ELSE LIST lnum-1 TO lnum

10 DEF PROC paglist st,end
 DEFAULT st=l,end=9999
 LET x=DPEEK(23635)
 DO
 LET x=x+DPEEK(x+2)+4
 LET lnum=PEEK x*256+PEEK (x+1)
 LOOP UNTIL lnum>=st
 20 DO UNTIL lnum>end
 IF INSTRING(1,MEMORY$()(x+4 TO x+8),"page") THEN
 PRINT #4;CHR$ 12;
 ELSE LLIST lnum-1 TO lnum
 30 LET x=x+DPEEK(x+2)+4
 LET lnum=PEEK, x*256+PEEK (x+l)
 LOOP
 END PROC

40 DEF PROC page
 END PRCC
 70 page
 80 REM PAGEFUL OF STUFF
 130 page
 140 REM NEXT PAGE OF STUFF
 150 PRINT

Note the spaces between DEF PROC and page in line 40 - these prevent
this instance of "page" being found, as it will be too far from the
start of the line.

**
PRCC end - for those who hate STOP

Dr Alain Vezes (Albi, France) sent a collection of procedures. He
doesn't like STOP statements in programs, he says. PROC end can be
used instead of STOP. It will cause a "Program finished" or an "OK"
message.
Comment: you had better use a CLEAR or a RUN now and then, or the
stack will get cluttered with PROC return addresses.

100 DEF PPOC end: GO TO 1e4: END PROC

-13-

**
PROC lplot -- low resolution PLOT

Dr. Vezes sent two procedures to emulate the PLOT and UNPLOT of
the ZX81, for nostalgics! The smaller number of points also means
crude shapes can be drawn quite fast. Dr. Vezes used, repeated DRAWS
to make the large pixels, but the procedure below uses UDGs instead,
as this is faster. UNPLOT can be emulated b'1 makinq the IN" colour
the same .is the background colour when the PROC is called. "ALTER"
is entered as a keyword.

10 FOR t=0 TO 42
 lplot t,t
 NEXT t

20 DEF PROC lplot x,y
 30 IF PEEK USR "a"<>240 THEN
 LOCAL n,x
 RESTORE 30
 FOR n=USR "a" TO USR "a"+7
 READ x
 POKE n,x
 NEXT n
 DATA 240,240,240,240,0,0,0,0
 40 KEYWORDS 0
 PLOT OVER 2;4*x,4*y+3;" ALTER "
 KEYWORDS 1
 50 END PROC

**
PROC m/c - storing machine code above RAMTOP

This contribution is from Ettrick Thomson (Aldeburgh, Suffolk).
We have corresponded quite a bit about the problem of loading
machine code above a RAMTOP that differs according to the DEF KEYS
and WINDOWS you have created. Although CLEAR with a number less than
768 will create space above the KEY/WINDOW definitions by moving
them (and RAMTOP) down, the location of the space will still vary
according to which version of BB you have, and it will be different
if you have already placed some code in this area. The solution is
to create space with CLEAR, and then look through the KEY/WINDOW
data, starting just above RAMTOP, for the zero end marker. The next
location is the start of the space you have just created.

Ettrick has incorporated this method into a procedure that takes
a variable name and the space required as its parameters. The space
is created, found, and the code is READ and POKEd into it. The
variable name you give is set equal to the address of the code, so
that e.g. RANDOMIZE USR name can be used to excecute the code.
Remember that RUN will clear this value - you might rant to print it
and then use it in a LET statement. Note also that running this
example multiple times will insert multiple copies of two code
routines above RAMTOP. This will work, but it may not be your
intention.

The example prints RAMTOP i.e. DPEEK(23730) as two code routines
are poked into place. The first one is Ettrick's fast square root
routine - it is about seven times faster than the normal SQR and
more accurate. It is demonstrated at line 100. The other routine is
just a dummy that returns 123 - it is executed at line 90 to prove
that several routines can be poked into place and still work!

-14-

10 RESTORE
 20 PRINT DPEEK(23730)

30 m/c sq,33
 40 DATA 239,61,192,56,6,5,126,167,200,198,128,31,119,35,126,
 23,48,2,207,9,54,127,239,49,224,1,5,15,56,53,16,246,201

50 PRINT DPEEK(23730)

60 m/c dy,4
 70 DATA 1,123,0,201
 8O PRINT DPEEK(23730)
 90 PRINT dy,USR dy
 100 INPUT x
 110 PRINT x,x AND USR sq
 120 GO TO 100

9900 DEF PRROC m/c REF s,l
 LOCAL a,b
 CLEAR l
 LET s=DPEEK (23730) +2
 DO UNTIL PEEP (s-1)=0
 LET s=s+3+DPEEK(s)
 LOOP
 FOR a=s TO s+l-1
 READ b
 POKE a,b
 NEXT a
 9910 END PROC

Ettrick suggested that the procedure could be easily modified to
LOAD the code from tape or Microdrive, rather than from a DATA
statement. If you stick to DATA statements, you might be able to use
ITEM to detect the end of the data and avoid the need for knowing
the number of bytes.... hmmm, you wouldn't know the space to CLEAR
until you had read all the data... perhaps you could accumulate the
bytes in a string, then do the CLEAR required for its length, and
POKE the string into the correct place...

**
TOWERS OF HANOI REVISITED

Apart from PROC m/c, Ettrick Thomson also sent a graphically
pleasing version of "Towers of Hanoi" (see issue 3) and suggested a
faster version of PROC hanoi which has relevance to recursion in
general. This part is listed below it won't work on its own).
Ettrick points out that the faster recursion is stopped, the better;
the version in issue 3 stopped at n=0, whereas the version below
stops at n=1. Calls to hanoi with n=0 do nothing but add to the
running time, so it is better to take special action when n=1 (the
ELSE part) and avoid further recursion.

9000 DEF PROC hanoi A,B,C,n
 IF n>1 THEN
 hanoi A,C,B,n-1
 move_ring n,A,B
 hanoi C,B,A,n-1
 ELSE
 move-ring 1,A,B
 9010 END PROC

-15-

*
O

p
M

C

I
l
t
u
c

C

s
p
C
n
j

(
c

o
D

 READERS' LETTERS ETC.

Everyone who reads the computer magazines

knows that it isn't sufficient just to answer
letters and confuse a lot of people to be
considered a computer expert - you need a
high-contrast picture of yourself at the top
of your column, preferably one that makes you
look like a zombie. So, using a screen image
transfered from a SEC and PROC dump from this
issue, I've prepared something suitable. From
now on, I'll be a proper expert - if I don't
know something, I'll make it up! (Well I
think some of them do...)

CP's +80 ADDRESS MANAGER

Charles Bustard has come up with some improvements on the above
rogram which he offers to anyone interested in using it with
icrodrive. Contact him at:

"Thirteen" Grove Wood Close, Chorleywood, Herts. WD3 5PU

**
APS LOCK DETECTION

an Flinn (Purley, Surrey) wanted to know how to detect the caps
ock state from inside a program (allowing a word-processing routine
o display the status - Ian varied the BORDER colour.) I suggested
sing AND PEEK(23658,8) which returns 0 for lower case and 8 for
apitals.

**
HR$ 15 (ENTER-like control code)

Dr. Alain Votes (Albi, France) has some problems with printing
trings containing CHR$ 15 because a carriage return +TAB 5 is
roduced. There is some conflict between what it is desirable for
HR$ 15 to do in listings and in a PRINT statement - the former
eeds a TAB for correct indentation. However, if you want to yet
ust the carriage return, make these POKES:

POKE 47706,62: POKE 47707,13: POKE 47709,201

Why not use a CHR$ 13 - return - in the first place? Well, you
an't enter that in the middle of a string with INPUT or EDIT.)

**

David Warne of Chester wrote to complain that the POKEs on page 1
f Newsletter 3 cause more problems than they correct. (Thanks
avid!) An improved version is:

DFOKE 60082,63676: DPOKE 60088,63678
DPOKE 56097,63676: DPOKE 56100,63678

-16-

**
Dear Dr. Wright,

I should like to be able to send the real-time clock display
elsewhere, rather than the top left hand corner of the screen...
when editing and debugging a program I find it difficult to read the
clock as there is no border between the clod: and the listing. Also
the clock tends to scroll down the screen with the listing,
corrupting it.

Does anyone have a PROC for editing large strings? With normal edit
there is a warning "rasp" and it is very slow as it rebuilds the
screen. Any ideas? I want to generate a simple word processor, or
text editor.

I feel that going from A4 size was a mistake as it is now more
awkward to file the Newsletters. Not only that the print is half
size, is this a cost cutting exercise? No matter thanks for Beta
Basic, you've done many Spectrum owners a big favour. Keep up the
good work.

Martin Reed, Gloucester

Thanks for the encouragement! You can move the CLOCK display by
poking some locations: 61314 and 61318 contain the least and most
significant bytes of the screen address of the top right hand pixel
of the time display. Because of the complex way the screen is
mapped, you may have to think a bit to get the position correct!
(well I just corrupted my program...) Location 61314 normally holds
31, and 61318 holds 64. Poking values between 7 and 255 into 61314
will make the display occupy all the main print positions in the top
third of the screen. Poking 61318 with 65 or 66 will lower the
display be one or two pixels; poking it with 72 or 80 will move the
display to the middle or bottom third of the screen. POKE 61314,255:
POKE 61318,80 will move the display to the bottom right of the
screen, in the INPUT line, which might be a convenient location.

I know several users have written text editors, but I don't seem to
have the right scrap of paper to hand... it tends to be slow work
inserting or deleting if you have to reprint the entire screen.
Perhaps you could use something entirely screen Cased, using cursor
control codes as in the GET key example in the manual. You could
open up or delete new lines or text spaces with ROLL. When the
screen was finished, you could use the slow SCREEN$ method to move
it to a string, perhaps doing some processing (get rid of extra
spaces?) on the way. You can use the method in PROC cpy (in this
issue) to process a 64-column screen. PROC prtstr in issue 3 might
come in handy too. All this is just off the top of the head stuff -
what do the rest of you think?

Opinions on the AS size Newsletter seem to be split down the middle
- as were the printing costs! The Newsletters have been much longer
than I anticipated, so this is a valuable saving. I am sorry for the
filing problem.

**
LAST WORD

The readers letters got squeezed a bit this issue - I actually
had to chop off a couple of prepared pages. (They have already been
replied to personally, of course.) More next issue.

BETASOFT 92 OXFORD ROAD, MOSELEY, BIRMINGHAM, B13 9SQ, ENGLAND

Scanned, Typed, OCR-ed, and PDF by

Steve Parry-Thomas 21th September 2004.

This PDF was created to preserve this
Newsletter for the future.

For all ZX Spectrum, Beta Basic
And www.worldofspectrum.org users

(PDF for Michael & Joshua)

http://www.worldofspectrum.org/

